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Introduction. A great  deal of' work concerning the quadreti0 var ia t ion 

of a s tochast ic  process ha6 been done i n  the last few years. 

The problem dea l t  with have taken the  following forms 

kt i X ( t ) ,  P ( t ) #  t c  T) be a etochastic prooess on the  

probabi l i ty  space (A , P) where T = [0,1], X ( t )  i e  F ( t )  measur- 

able, and P ( s )  e P ( t ) c  F for s s t t T  w i t h  e f to  Let 

rti* and 
f o r  each n 2 1. Ue assume nn+l is a refinement of 

stochast ic  process .) we let 

Sn(t,w) = r;, n ( y )  pJ2 X(t!")) 

The problem is of c o u r ~ e  t o  determine when t h e  limit of the 

eequence of processes {Sn(t),  F ( t ) ;  t c  T} ex i s t  in probabili ty,  
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almost surely or i n  the mean, and t o  f i n d  t h i s  l i m i t  when 

it exists. 

In thie paper we assume t h e  X process is a second order 

martingale and Y 1, or Y is a s a ~ t ~ p b  continuous process. In 

t h i s  case we obtain probabili ty and i n  some cases mean limits. 

The main theorem a re  theorem 1.1 and theorem 1.2, These 

l imi t  theorems a r e  more general i n  some cases than those i n  [ 4 ]  and 

[ 6 ] .  However, some of the l i m i t  theorems i n  [ 4 ]  and [ 6 ]  a r e  stronger 

i n  the sense that, due t o  the special  nature of  the processes 

involtred, cer ta in  mean and 8.8. convergence is obtained where our 

lizits are  i n  probability. 

Section 1. 

In  t h i s  section we s t a t e  some known results and develop the 

body of the paper. 

Lemma 1.4 131 ADD roximation theorem f o r  s a m l e  continuoua Drocesses: 

Let { X ( t ) ,  F ( t ) i  t E T} be an a.s. sample continuous process. 
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There i s  a sequence of sto9ping times f?,, I V 2 13 such tha t  

if {Xy(t), F( t ) ;  t c T) is the  X-procees stopped a t  z, 9 then 

i) 

ii) There ia a set A c-f, P(A ) =z 0, such tha t  if 

each X,, i a  sample equicontinuoua and uniformly bounded by L’ . 
J p! , then 

there  exists 9 (a ) such tha t  X , ( t )  X(t) for a l l  t t T, if  

$ 2  v ( 4 .  

- Ismma u[1,2,3] Submartingale decomxsition theorem: 

If fX( t ) ,  F( t )g  t c  TI is an a.8. sample continuow submartingale, 

then it ha8 a uniaue decomosition, 

P([X(t) = 5 ( t )  + XZ(t) for  a l l  t TI) = 1 

where XI is an 8.s. sample continuoue martingale, X has ama. 

sample function monotone non-decreasing and continuous with 

2 

XZ(t) = P l f m  Zt E[AX(tSn)) I F(t in))] ,  

if and only if 
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In particular,  if the  X-procees has a.8. sample function 

non-negative, then the condition is always sat isf ied.  

- Note: The decomposition theorem was first proved by Meyer [ Z ] ,  and 

the given condition f o r  a 8.8. sample continuoua Bnbmsrtingale was 

given by Johnson and Hew [ Z ] .  

Let {X(t), P( t ) ;  t ET] be an a.8. sample continuous second 

order martingale. Let 

z ( t )  = [X(t)I2 

Then {Z(t) ,  P(t); t€  T] is a non-negative ample continuoua 

submartingale and hence by Ismma1.2,it has the unique deconrpasition 

P([ Z (t) = Z l ( t )  + Z,(t) f o r  a l l  t E  TI) = 1 

where Z1 is a sample continuous martingale and Z2 has a.e. 

sample function monotone non decreasing and continuous. 

We observe that Z2(0)  = 0 a*s. 

Theorerq With X and 2 as just defined 
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= I  

(where 1.i.m. indicates limit in the  qwnj. 
Proof: 

We obrem that 

Then, eince 8.e. oample function of the Z2=proceea ie monotone 

nondeorearing, Z 2 ( t g ) )  f’ Z 2 ( t )  ae n + ao, and the monotone 

oonvetrgemoo theorem irr applicable. Henee, for eaoh t t  T, 
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Since the sequences are non-negative, it i e  sufficient [see Halmoa[7],p*ll2] 

t o  ehcrw. %he probability limita s d s t  and are as rtated in the 

theorBm. prom I43Xria 1.24lowever, wk3 .have 

We now establish that 

P lim Zt A' X ( t p ) )  - P l i m  Zt E[ AZ(tj')) 1 F ( t p ) ) ]  

fst 1 X , ( t ) ,  F( t )#  t r TI be the requence of proeeeses as 

given i n  fRmmn 1.13hen each 

sample eq~mntinuoua mertingale. Letting Z, = x;, we have the 

X, is a unifurmly bounded, a.6. 
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as n + 00 because of the uniform sample equicontinuity of the Xy 

pr  oces t3 

It is e a s i l y  eetablished [3], that  P lim Zzj ( t )  = Z2( t )  f o r  a l l  

t t T, and tha t  

t he  convergence being uniform i n  n. It follows tha t  

P l i m  ;Ct A2 X(t?)) = P Um Z z l ( t )  = Z,(t) 

and the theorem is completed. 

D e f i n i t  ion 1.1 
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A process {X(t), F ( t  )#  t L I!) is called a quasi-msrtingsle 

fXi(t), P(t); ttT) , i = 1, 2, such if there exist processes 

that 

&ere 5 is a martingale and X has 8.8. sample function of 
2 

bounded variation (b-v.) on T. 

Cor ollars If X is  a quasi-msrtingalewith X1 a sample 

continuous second order martingale and X2 having a.em sample 

function continnone, and if 

is a! defined previously 

We have 



, 
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Theorem I&: 

Ist X be a quasi-martingale satirrfying the condition of 

CorollarylJ,and let Z(t) = X i ( t )  = Zl(t) + Z,(t) be as given 

I 

there. If {Y(t),  P(t); t f  TI is aero sample c&tinuous, then 

where RJ denotes the ordinary Riemann-Stieltjes integral which 

exista a.8. under the stated conditlom. 

- Proof: It is clear from ~heoremlUandhrollarylilthat if either 
6’ 

of the probability limits exist, then so does the other and they 

a re  equal. Hence it is  sufficient to  8hw that 
t 

R Y ( s )  d Z,(g) = P lim Ct Y(t 3 (n)) E [ A Z ( t p ) )  I F ( t j n ) ) ]  
0 

1) Aaaume F and Z2 are aniformly bounded, then 
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But this expression goea to zero as n + a0 because of the uniform 

boundedness and continuity of Z2. 

2) We now observe that if xY i a  x stopped at Tu as given 

in Lemmal&then Xu is again a quasi-martingale with X, = XI,, + XZ$ 

where Xi3 is Xi stopped at T9 0 Also 

where Zis is Zi stopped at  z# 

"hue if X3 and Y,, are X and T stopped at T,, what 

has been proved i n  1) gives ua the desired result for each %and 

The result now follows from the approximatione =Ye 
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(n) Le replaced by 
j 

Note: one can ehow t h a t  (1.1) holds m n  if t 

of the Y-process, 

Section 2 t s m  

We l e t  {U(t), F( t ) ;  t t T] be a Brownian motion process. 
t 

We will denote by D $(a@) U(d 8,3). the stochast ic  i n t eg ra l  
0 

as defined i n  [5]. 

T ~ m m a  2.1: (Theorem 5.3, page 449, Doob), 

Let {X(t), F( t ) ;  t t T} be a second order 8.8. sample contin- 

EOUS martingale. If there  is a measurable, a.8. posi t ive process 

then there  is a Brownian motion prmees {U(t), F ( t  t E T 3 such 

t h a t  
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From this theorem and what we have proven i n  aeetion 1, we get 

the following theorem. 

Theorem 2 4 :  Let {X(t), P ( t ) j  t T] be a second order 8.8. sample 

continuone martingale. 

of Xz as given i n  Lemma 1.2.E for a.8.d , Z 2 ( t )  

Let X' = z = z1 + Z2 be the decomposition 

is absolutely 

continuous w.r.t. Lebesgue measure, and if Z;(t) = - Z 2 ( t )  is 
d t  

a.8. posi t ive ( i t  is 8.8. non-negative). &en there is a Brownian 

par t i t i ons  such that 

and one may ask if Z2(t, 3 ) is always absolutely continuous w .rot. 

hbesgue measure. However if one takes a Brownian motion process 

with Var(X(t)) = C(t),  where C ( t )  is the Cantor fanction, and 
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(4 >, 
f have some di f f icu l ty  proving direct ly  that  if G ( t )  = IL,a .Zt ‘g( t  

where g ( t )  is  continuous, then G ( t )  need not be absolutely con- 

tinuous w.r.t. Lebesgue meaaure. In  [4] and [6], the l i m i t  Z 2 ( t , 3 )  

i s  always 8.8. sample absolutely continuous w.r.t. Isbeague measure 

because the martingale proceeaea considered are exaatly those given 

i n  Ism 2.1. 

With Theorem 2.1we obtain a theorem similar t o  tha t  proved i n  

Theorem 2.2 Assume tha t  { X ( t ) ,  F( t ) ;  t i T ]  i s  a diffusion process 

given by the in tegra l  equation 
t t 

n 

where W ( t )  i s  a Brownian motion proceas. 

Then 



Proof  : - 
We need only observe that X is a quasi-martingale satisfying 

the conditions of corollary l a 1  w i t h  
t 
r 

t 

As was shown i n  [ 6 ] ,  t h e  linit in 2) I s  actually in t5s z z z n  

if one uses the sufficient conditions on m ( a ' ; a )  and C(a a )  

given in [ 5 ]  to insure t he  existence of a solution of the d i f fus ion  

equation. 
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